Ядерная физика - определение. Что такое Ядерная физика
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Ядерная физика - определение

РАЗДЕЛ ФИЗИКИ, ИЗУЧАЮЩИЙ СТРУКТУРУ И СВОЙСТВА АТОМНЫХ ЯДЕР И ЯДЕРНЫЕ РЕАКЦИИ
Физика ядра; Физика атомного ядра; Физик-ядерщик; ТЯФ
Найдено результатов: 491
ЯДЕРНАЯ ФИЗИКА         
раздел физики, охватывающий изучение структуры и свойств атомных ядер и их превращений - процессов радиактивного распада и ядерных реакций.
Ядерная физика         
I Я́дерная фи́зика

раздел физики, посвященный изучению структуры атомного ядра, процессов радиоактивного распада и механизма ядерных реакций (См. Ядерные реакции). Придавая этому термину более общий смысл, к Я. ф. часто относят также физику элементарных частиц (См. Элементарные частицы). Иногда разделами Я. ф. продолжают считать направления исследований, ставшие самостоятельными ветвями техники, например ускорительную технику (см. Ускорители заряженных частиц), ядерную энергетику (См. Ядерная энергетика). Исторически Я. ф. возникла ещё до установления факта существования ядра атомного (См. Ядро атомное). Возраст Я. ф. можно исчислять со времени открытия радиоактивности (См. Радиоактивность).

Канонизированного деления современной Я. ф. на более узкие области и направления не существует. Обычно различают Я. ф. низких, промежуточных и высоких энергий. К Я. ф. низких энергий относят проблемы строения ядра, изучение радиоактивного распада ядер, а также исследования ядерных реакций, вызываемых частицами с энергией до 200 Мэв. Энергии от 200 Мэв до 1 Гэв называются промежуточными, а свыше 1 Гэв - высокими. Это разграничение в значительной мере условно (особенно деление на промежуточные и высокие энергии) и сложилось в соответствии с историей развития ускорительной техники. В современной Я. ф. структуру ядра исследуют с помощью частиц высоких энергий, а фундаментальные свойства элементарных частиц устанавливают в результате исследования радиоактивного распада ядер.

Обширной составной частью Я. ф. низких энергии является нейтронная физика, охватывающая исследования взаимодействия медленных нейтронов с веществом и ядерные реакции под действием нейтронов (см. Нейтронная спектроскопия). Молодой областью Я. ф. является изучение ядерных реакций под действием многозарядных ионов. Эти реакции используются как для поиска новых тяжёлых ядер (см. Трансурановые элементы), так и для изучения механизма взаимодействия сложных ядер друг с другом. Отдельное направление Я. ф. - изучение взаимодействия ядер с электронами и фотонами (см. Фотоядерные реакции). Все эти разделы Я. ф. тесно переплетаются друг с другом и связаны общими целями.

В Я. ф. (как и во всей современной физике) существует резкое разделение эксперимента и теории. Арсенал экспериментальных средств Я. ф. разнообразен и технически сложен. Его основу составляют ускорители заряженных частиц (от электронов до многозарядных ионов), ядерные реакторы (См. Ядерный реактор), служащие мощными источниками нейтронов, и Детекторы ядерных излучений, регистрирующие продукты ядерных реакций. Для современного ядерного эксперимента характерны большие интенсивности потоков ускоренных заряженных частиц или нейтронов, позволяющие исследовать редкие ядерные процессы и явления, и одновременная регистрация нескольких частиц, испускаемых в одном акте ядерного столкновения. Множество данных, получаемых в одном опыте, требует использования ЭВМ, сопрягаемых непосредственно с регистрирующей аппаратурой (см. Ядерная спектроскопия). Сложность и трудоёмкость эксперимента приводит к тому, что его выполнение часто оказывается посильным лишь большим коллективам специалистов.

Для теоретической Я. ф. характерна необходимость использования аппаратов разнообразных разделов теоретической физики: классической электродинамики (См. Электродинамика), теории сплошных сред, квантовой механики (См. Квантовая механика), статистической физики (См. Статистическая физика), квантовой теории поля (См. Квантовая теория поля). Центральная проблема теоретической Я. ф. - квантовая задача о движении многих тел, сильно взаимодействующих друг с другом. Теорией ядра и элементарных частиц были рождены и развиты новые направления теоретической физики (например, в теории сверхпроводимости (См. Сверхпроводимость), в теории химической реакции), получившие впоследствии применение в других областях физики и положившие начало новым математическим исследованиям (обратная задача теории рассеяния и её применения к решению нелинейных уравнений в частных производных) и др. Развитие теоретических и экспериментальных ядерных исследований взаимозависимо и тематически связано. Стоящие перед Я. ф. проблемы слишком сложны и лишь в немногих случаях могут быть решены чисто теоретическим или эмпирическим путём. Я. ф. оказала большое влияние на развитие ряда других областей физики (в частности, астрофизики и физики твёрдого тела) и других наук (химии, биологии, биофизики).

Прикладное значение Я. ф. в жизни современного общества огромно, её практические приложения фантастически разнообразны - от ядерного оружия (См. Ядерное оружие) и ядерной энергетики до диагностики и терапии в медицине (см. Радиология). Вместе с тем (и это является специфической особенностью Я. ф.) она остаётся той фундаментальной наукой, от прогресса которой можно ожидать выяснения глубоких свойств строения материи и открытия новых общих законов природы.

Лит. см. при ст. Ядро атомное.

И. С. Шапиро.

II Я́дерная фи́зика ("Я́дерная фи́зика",)

научный журнал Отделения ядерной физики АН СССР. Основан в 1965, издаётся в Москве. Выходит 2 тома в год по 6 выпусков в каждом. Публикует оригинальные статьи, рассчитанные на специалистов по физике атомного ядра, физике элементарных частиц, физике частиц высоких энергий, физике космических лучей. Тираж (1978) около 1000 экз. Переиздаётся в США на английском языке (с 1965).

Ядерная физика         
Я́дерная фи́зика — раздел физики, изучающий структуру и свойства атомных ядер, а также их столкновения (ядерные реакции).
Физика жидкостей         
Физика жидкости
Физика жидкостей (физика жидкого состояния вещества) — раздел физики, в котором изучаются механические и физические свойства жидкостей. Статистическая теория жидкостей является разделом статистической физики.
Ядерная фотографическая эмульсия         
  • Треки заряженных частиц, зафиксированные ядерной фотоэмульсией
ЖЕЛАТИНОСЕРЕБРЯНАЯ ФОТОЭМУЛЬСИЯ, ПРЕДНАЗНАЧЕННАЯ ДЛЯ РЕГИСТРАЦИИ СЛЕДОВ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ
Ядерная эмульсия; Метод толстослойных фотоэмульсий
Ядерная фотографическая эмульсия — специальная желатиносеребряная фотоэмульсия, предназначенная для регистрации следов элементарных частиц методом толстослойных фотоэмульсий. От обычных фотографических эмульсий отличается большой толщиной, иногда превышающей 1 миллиметр (до 1200 микрон).
Ядерная фотографическая эмульсия         
  • Треки заряженных частиц, зафиксированные ядерной фотоэмульсией
ЖЕЛАТИНОСЕРЕБРЯНАЯ ФОТОЭМУЛЬСИЯ, ПРЕДНАЗНАЧЕННАЯ ДЛЯ РЕГИСТРАЦИИ СЛЕДОВ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ
Ядерная эмульсия; Метод толстослойных фотоэмульсий

Фотографическая эмульсия, предназначенная для регистрации следов заряженных ядерных частиц. Используется в ядерной физике (См. Ядерная физика), физике элементарных частиц (См. Элементарные частицы) и космического излучения, для авторадиографии (См. Авторадиография) и в дозиметрии (См. Дозиметрия) ядерных излучений. Первым применением фотоэмульсии в ядерной физике можно считать исследования А. А. Беккереля (См. Беккерель), который в 1896 обнаружил радиоактивность солей U по вызываемому ими почернению фотоэмульсии. В 1910 японский физик С. Киносита показал, что зёрна галогенида серебра обычной фотоэмульсии становятся способными к проявлению, если через них прошла хотя бы одна α-частица. В 1927 Л. В. Мысовский с сотрудниками (СССР) изготовил пластинки с толщиной эмульсионного слоя 50 мкм и наблюдал с их помощью рассеяние α-частиц на ядрах эмульсии. В 30-х гг. началось изготовление Я. ф. э. со стандартными свойствами, с помощью которых можно было регистрировать следы медленных частиц (α-частиц, протонов). В 1937-1938 М. Блау и Г. Вомбахер (Австрия) и А. П. Жданов с сотрудниками (СССР) наблюдали в Я. ф. э. расщепления ядер, вызванные космическим излучением. В 1945-1948 появились Я. ф. э., пригодные для регистрации слабо ионизующих однозарядных релятивистских частиц, метод Я. ф. э. стал точным количественным методом исследований.

Я. ф. э. отличается от обычной фотоэмульсии двумя особенностями: отношение массы галогенида серебра к массе желатины в 8 раз больше; толщина слоя, как правило, в 10-100 раз больше, достигая иногда 1000-2000 мкм и более (стандартная толщина фирменных Я. ф. э. 100-600 мкм). Зёрна галогенида серебра в эмульсии имеют сферическую или кубическую форму, их средний линейный размер зависит от сорта эмульсии и обычно составляет 0,08-0,30 мкм.

Заряженные частицы или электромагнитное излучение, связанное с ядерными реакциями, вызывают в Я. ф. э. действие, аналогичное свету. Процесс проявления играет роль сильного увеличения первоначального слабого эффекта (скрытого фотографического изображения (См. Скрытое фотографическое изображение)), подробно тому как лавинный разряд в Гейгер-Мюллера счётчике (См. Гейгера - Мюллера счётчик) или бурное вскипание пузырьков в пузырьковой камере (См. Пузырьковая камера) многократно увеличивают слабые эффекты, связанные с начальной ионизацией, производимой заряженной частицей. Ядерные частицы, как правило, обладают большой энергией, благодаря чему они могут создавать центры чувствительности в лежащих на их пути зёрнах галогенида серебра. После фиксирования Я. ф. э. вдоль следа частицы образуется цепочка чёрных зёрен. Следы частиц наблюдают с помощью микроскопа при увеличении 200-2000.

В ядерной физике эмульсии обычно используют в виде слоев, нанесённых на стеклянные подложки. При исследовании частиц высоких энергий (на ускорителях или в космическом излучении) их иногда укладывают в большие стопки в несколько сотен слоев. Объём стопок доходит до десятков л; образуется практически сплошная фоточувствительная масса. После экспозиции отдельные слои могут быть наклеены на стеклянные подложки и обработаны обычным образом. Положение слоев точно маркируется, благодаря чему траекторию частиц легко прослеживать по всей стопке, переходя от слоя к слою.

Свойства следа, оставленного в эмульсии заряженной частицей, зависят от её заряда Z, скорости v и массы М. Так, остаточный пробег частицы (длина следа от его начала до точки остановки) при данных е и v пропорционален М; при достаточно большой скорости v частицы плотность зёрен (число проявленных зёрен на единицу длины следа) g Ядерная фотографическая эмульсия e2/v2. Если плотность зёрен слишком велика, они слипаются в сплошной чёрный след. В этом случае, особенно если е велико, мерой скорости может быть число δ-электронов, образующих на следе характерные ответвления. Их плотность также Ядерная фотографическая эмульсия e2/v2. Если е = 1, а v Ядерная фотографическая эмульсия с (с - скорость света), то след частицы в релятивистской Я. ф. э. имеет вид прерывистой линии из 15-20 чёрных точек на 100 мкм пути (рис. 1). В Я. ф. э. можно измерять рассеяние частицы, среднее угловое отклонение на единицу пути: φ Ядерная фотографическая эмульсия e/pv (р - импульс частицы). Я. ф. э. можно поместить в сильное магнитное поле и измерить импульс частицы и знак её заряда, что позволяет определить заряд, массу и скорость частицы. Достоинства метода Я. ф. э. - высокое пространственное разрешение (можно различать явления, отделённые расстояниями < 1 мкм, что для релятивистской частицы соответствует временам пролёта <10-16 сек) и возможность длительного накопления редких событий.

Создание современной Я. ф. э. явилось большим научно-техническим достижением. По словам английского физика С. Пауэлла, "разработка улучшенных эмульсий как бы открыла новое окно в природу, через которое мы впервые увидели следы, странные и неожиданные, еще неизвестные физикам...".

С 1945 по 1955 методом Я. ф. э. были сделаны важные открытия: зарегистрированы π-мезоны (пионы) и последовательности распадов π → μ + ν, μ → e + ν + ν в Я. ф. э., экспонированных космическим излучением, а также обнаружены ядерные взаимодействия π-- и К--мезонов. С помощью Я. ф. э. удалось оценить время жизни π0-мезона (10-16 сек), обнаружен распад К-мезона на 3 пиона, открыт Σ-гиперон и обнаружено существование гипер-ядра (См. Гипер-ядро), открыт антилямдагиперон (см. Гипероны). Методом Я. ф. э. был исследован состав первичного космического излучения; кроме протонов, в нём были обнаружены ядра He и более тяжёлых элементов, вплоть до Fe (рис. 3). С 60-х гг. метод Я. ф. э. вытесняется пузырьковыми камерами (См. Пузырьковая камера), которые дают бо́льшую точность измерений и возможность применения ЭВМ для обработки данных.

Лит.: Пауэлл С., Фаулер П., Перкинс Д., Исследование элементарных частиц фотографическим методом, пер. с англ., М., 1962.

А. О. Вайсенберг.

Рис. 1. Следы частиц с различной ионизующей способностью. "Звезда" создана π-мезоном с энергией 750 Мэв. На следе, идущем вправо, заметны "веточки" медленных δ-электронов.

Рис. 2. "Звезда", образованная ядром S из первичного космического излучения, след унизан многими следами δ-электронов. Следы частиц с небольшой ионизацией (стрелки) принадлежат мезонам, возникшим при столкновении ядра S с ядрами эмульсии.

Ragdoll-физика         
  • Ранний пример использования физики ''Ragdoll'', [[1997 год]].
  • Шариковое соединение
  • Шарнирное (петельное) соединение
  • Демонстрация физики Ragdoll
  • Tokamak]]. Этот Ragdoll сконструирован с использованием комбинации шарнирных и шариковых сочленений (соединений) с ограничениями движения данных соединений. В этой демонстрации несколько Ragdoll-моделей катятся вниз по ступенькам.
Ragdoll; Физика Ragdoll
Физика Ragdoll (рэгдо́лл) — вид процедурной анимации, пришедший на замену статичной, пререндерной анимации. Название произошло от английского словосочетания rag doll (rag — тряпка, doll — кукла), в силу чего на русском языке этот вид анимации часто называют «тряпичной куклой».
Немецкая физика         
  • Йоханнес Штарк]]}}
Арийские физики; Еврейская физика; Deutsche Physik; Арийская физика
«Немецкая физика» («арийская физика»; ) — националистическое движение в среде немецких физиков начала 1930-х годов, возникшее в результате непонимания и неприятия новых физических теорий, ныне известных как теория относительности и квантовая механика, то есть прежде всего работ Альберта Эйнштейна, на которые был навешен ярлык «еврейская физика» ().
Ядерная программа Ирана         
  • Основные объекты ядерной программы Ирана
ОБЪЕДИНЕНИЕ ЯДЕРНОЙ ПРОМЫШЛЕННОСТИ ИРАНА
Иранская ядерная программа; Ядерное оружие Ирана
Ядерная программа Ирана включает в себя несколько исследовательских объектов, два урановых рудника, исследовательский реактор и объекты по переработке урана, которые включают в себя три известных завода по обогащению урана.. В то же время в адрес Ирана постоянно поступали и поступают обвинения в разработке ядерного оружия.
КОНДЕНСИРОВАННОЕ СОСТОЯНИЕ         
  • рубидия]]. Синие и белые области соответствуют более высокой плотности.
  • Компьютерное моделирование ''наношестерёнок'' из молекул [[фуллерен]]ов. Существует надежда, что достижения в области нанотехнологий приведут к созданию машин, работающих на молекулярном уровне.
  • гелия]] в Лейдене в 1908 году
  • белка]].
  • год=2011}}</ref>.
  • Рис. 14}}.
  • лабораториях Bell]]
Физика сплошных сред; Физика конденсированных сред; Конденсированное состояние
вещества , жидкое и твердое агрегатные состояния вещества. Переход вещества из газообразного в конденсированное состояние называется конденсацией.

Википедия

Ядерная физика

Я́дерная фи́зика — раздел физики, изучающий структуру и свойства атомных ядер, а также их столкновения (ядерные реакции).

Что такое ЯДЕРНАЯ ФИЗИКА - определение